ALGEBRA

- 1 Express each of the following in the form $a\sqrt{2} + b\sqrt{3}$, where a and b are integers.
 - **a** $\sqrt{27} + 2\sqrt{50}$
 - **b** $\sqrt{6}(\sqrt{3} \sqrt{8})$
- 2 Given that x > 0, find in the form $k\sqrt{3}$ the value of x such that

$$x(x-2) = 2(6-x)$$
.

3 Solve the equation

$$25^x = 5^{4x+1}$$
.

- 4 **a** Express $\sqrt[3]{24}$ in the form $k\sqrt[3]{3}$.
 - **b** Find the integer n such that

$$\sqrt[3]{24} + \sqrt[3]{81} = \sqrt[3]{n}$$
.

5 Show that

$$\frac{10\sqrt{3}}{\sqrt{15}} + \frac{4}{\sqrt{5} - \sqrt{7}}$$

can be written in the form $k\sqrt{7}$, where k is an integer to be found.

- **6** Showing your method clearly,
 - **a** express $\sqrt{37.5}$ in the form $a\sqrt{6}$,
 - **b** express $\sqrt{9\frac{3}{5}} \sqrt{6\frac{2}{3}}$ in the form $b\sqrt{15}$.
- 7 Given that $x = 2^{t-1}$ and $y = 2^{3t}$,
 - \mathbf{a} find expressions in terms of t for
 - \mathbf{i} xy
- ii $2v^2$
- **b** Hence, or otherwise, find the value of t for which

$$2y^2 - xy = 0.$$

8 Solve the equation

$$\sqrt{2}(3x-1) = 2(2x+3),$$

giving your answer in the form $a + b\sqrt{2}$, where a and b are integers.

- 9 Given that $6^{y+1} = 36^{x-2}$,
 - **a** express y in the form ax + b,
 - **b** find the value of $4^{x-\frac{1}{2}y}$.
- 10 Express each of the following in the form $a + b\sqrt{2}$, where a and b are integers.

a
$$(3-\sqrt{2})(1+\sqrt{2})$$

b
$$\frac{\sqrt{2}}{\sqrt{2}-1}$$

ALGEBRA continued

11 Solve the equation

$$16^{x+1} = 8^{2x+1}.$$

12 Given that

$$(a-2\sqrt{3})^2 = b-20\sqrt{3}$$

find the values of the integers a and b.

13 a Find the value of *t* such that

$$(\frac{1}{4})^{t-3} = 8.$$

b Solve the equation

$$(\frac{1}{3})^y = 27^{y+1}$$
.

14 Express each of the following in the form $a + b\sqrt{5}$, where a and b are integers.

a
$$\sqrt{20} (\sqrt{5} - 3)$$

b
$$(1-\sqrt{5})(3+2\sqrt{5})$$

$$c \frac{1+\sqrt{5}}{\sqrt{5}-2}$$

15 Given that $a^{\frac{1}{3}} = b^{\frac{3}{4}}$, and that a > 0 and b > 0,

a find an expression for $a^{\frac{1}{2}}$ in terms of b,

b find an expression for $b^{\frac{1}{2}}$ in terms of a.

16

In triangle ABC, $AB = 2\sqrt{3} - 1$, $BC = \sqrt{3} + 2$ and $\angle ABC = 90^{\circ}$.

a Find the exact area of triangle ABC in its simplest form.

b Show that $AC = 2\sqrt{5}$.

c Show that $\tan(\angle ACB) = 5\sqrt{3} - 8$.

17 a Given that $y = 2^x$, express each of the following in terms of y.

i
$$2^{x+2}$$

b Hence, or otherwise, find the value of x for which

$$4^x - 2^{x+2} = 0.$$

18 Given that the point with coordinates $(1 + \sqrt{3}, 5\sqrt{3})$ lies on the curve with the equation

$$y = 2x^2 + px + q,$$

find the values of the rational constants p and q.